Entrer un problème...
Algèbre linéaire Exemples
[03-206210320-1210100-1313-583]⎡⎢
⎢
⎢
⎢
⎢
⎢⎣03−206210320−1210100−1313−583⎤⎥
⎥
⎥
⎥
⎥
⎥⎦
Étape 1
Étape 1.1
Swap R2 with R1 to put a nonzero entry at 1,1.
[2103203-2060-1210100-1313-583]
Étape 1.2
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
Étape 1.2.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[221202322203-2060-1210100-1313-583]
Étape 1.2.2
Simplifiez R1.
[112032103-2060-1210100-1313-583]
[112032103-2060-1210100-1313-583]
Étape 1.3
Perform the row operation R4=R4-R1 to make the entry at 4,1 a 0.
Étape 1.3.1
Perform the row operation R4=R4-R1 to make the entry at 4,1 a 0.
[112032103-2060-12101-10-120-0-1-323-113-583]
Étape 1.3.2
Simplifiez R4.
[112032103-2060-12100-120-52213-583]
[112032103-2060-12100-120-52213-583]
Étape 1.4
Perform the row operation R5=R5-R1 to make the entry at 5,1 a 0.
Étape 1.4.1
Perform the row operation R5=R5-R1 to make the entry at 5,1 a 0.
[112032103-2060-12100-120-5221-13-12-5-08-323-1]
Étape 1.4.2
Simplifiez R5.
[112032103-2060-12100-120-522052-51322]
[112032103-2060-12100-120-522052-51322]
Étape 1.5
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
Étape 1.5.1
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
[11203210333-2303630-12100-120-522052-51322]
Étape 1.5.2
Simplifiez R2.
[112032101-23020-12100-120-522052-51322]
[112032101-23020-12100-120-522052-51322]
Étape 1.6
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
Étape 1.6.1
Perform the row operation R3=R3+R2 to make the entry at 3,2 a 0.
[112032101-23020+0-1+1⋅12-231+00+1⋅20-120-522052-51322]
Étape 1.6.2
Simplifiez R3.
[112032101-23020043120-120-522052-51322]
[112032101-23020043120-120-522052-51322]
Étape 1.7
Perform the row operation R4=R4+12R2 to make the entry at 4,2 a 0.
Étape 1.7.1
Perform the row operation R4=R4+12R2 to make the entry at 4,2 a 0.
[112032101-23020043120+12⋅0-12+12⋅10+12(-23)-52+12⋅02+12⋅2052-51322]
Étape 1.7.2
Simplifiez R4.
[112032101-230200431200-13-523052-51322]
[112032101-230200431200-13-523052-51322]
Étape 1.8
Perform the row operation R5=R5-52R2 to make the entry at 5,2 a 0.
Étape 1.8.1
Perform the row operation R5=R5-52R2 to make the entry at 5,2 a 0.
[112032101-230200431200-13-5230-52⋅052-52⋅1-5-52(-23)132-52⋅02-52⋅2]
Étape 1.8.2
Simplifiez R5.
[112032101-230200431200-13-52300-103132-3]
[112032101-230200431200-13-52300-103132-3]
Étape 1.9
Multiply each element of R3 by 34 to make the entry at 3,3 a 1.
Étape 1.9.1
Multiply each element of R3 by 34 to make the entry at 3,3 a 1.
[112032101-230234⋅034⋅034⋅4334⋅134⋅200-13-52300-103132-3]
Étape 1.9.2
Simplifiez R3.
[112032101-2302001343200-13-52300-103132-3]
[112032101-2302001343200-13-52300-103132-3]
Étape 1.10
Perform the row operation R4=R4+13R3 to make the entry at 4,3 a 0.
Étape 1.10.1
Perform the row operation R4=R4+13R3 to make the entry at 4,3 a 0.
[112032101-230200134320+13⋅00+13⋅0-13+13⋅1-52+13⋅343+13⋅3200-103132-3]
Étape 1.10.2
Simplifiez R4.
[112032101-23020013432000-947200-103132-3]
[112032101-23020013432000-947200-103132-3]
Étape 1.11
Perform the row operation R5=R5+103R3 to make the entry at 5,3 a 0.
Étape 1.11.1
Perform the row operation R5=R5+103R3 to make the entry at 5,3 a 0.
[112032101-23020013432000-94720+103⋅00+103⋅0-103+103⋅1132+103⋅34-3+103⋅32]
Étape 1.11.2
Simplifiez R5.
[112032101-23020013432000-947200092]
[112032101-23020013432000-947200092]
Étape 1.12
Multiply each element of R4 by -49 to make the entry at 4,4 a 1.
Étape 1.12.1
Multiply each element of R4 by -49 to make the entry at 4,4 a 1.
[112032101-23020013432-49⋅0-49⋅0-49⋅0-49(-94)-49⋅7200092]
Étape 1.12.2
Simplifiez R4.
[112032101-230200134320001-14900092]
[112032101-230200134320001-14900092]
Étape 1.13
Perform the row operation R5=R5-9R4 to make the entry at 5,4 a 0.
Étape 1.13.1
Perform the row operation R5=R5-9R4 to make the entry at 5,4 a 0.
[112032101-230200134320001-1490-9⋅00-9⋅00-9⋅09-9⋅12-9(-149)]
Étape 1.13.2
Simplifiez R5.
[112032101-230200134320001-149000016]
[112032101-230200134320001-149000016]
Étape 1.14
Multiply each element of R5 by 116 to make the entry at 5,5 a 1.
Étape 1.14.1
Multiply each element of R5 by 116 to make the entry at 5,5 a 1.
[112032101-230200134320001-1490160160160161616]
Étape 1.14.2
Simplifiez R5.
[112032101-230200134320001-14900001]
[112032101-230200134320001-14900001]
Étape 1.15
Perform the row operation R4=R4+149R5 to make the entry at 4,5 a 0.
Étape 1.15.1
Perform the row operation R4=R4+149R5 to make the entry at 4,5 a 0.
[112032101-230200134320+149⋅00+149⋅00+149⋅01+149⋅0-149+149⋅100001]
Étape 1.15.2
Simplifiez R4.
[112032101-230200134320001000001]
[112032101-230200134320001000001]
Étape 1.16
Perform the row operation R3=R3-32R5 to make the entry at 3,5 a 0.
Étape 1.16.1
Perform the row operation R3=R3-32R5 to make the entry at 3,5 a 0.
[112032101-23020-32⋅00-32⋅01-32⋅034-32⋅032-32⋅10001000001]
Étape 1.16.2
Simplifiez R3.
[112032101-23020013400001000001]
[112032101-23020013400001000001]
Étape 1.17
Perform the row operation R2=R2-2R5 to make the entry at 2,5 a 0.
Étape 1.17.1
Perform the row operation R2=R2-2R5 to make the entry at 2,5 a 0.
[11203210-2⋅01-2⋅0-23-2⋅00-2⋅02-2⋅10013400001000001]
Étape 1.17.2
Simplifiez R2.
[112032101-23000013400001000001]
[112032101-23000013400001000001]
Étape 1.18
Perform the row operation R1=R1-R5 to make the entry at 1,5 a 0.
Étape 1.18.1
Perform the row operation R1=R1-R5 to make the entry at 1,5 a 0.
[1-012-00-032-01-101-23000013400001000001]
Étape 1.18.2
Simplifiez R1.
[112032001-23000013400001000001]
[112032001-23000013400001000001]
Étape 1.19
Perform the row operation R3=R3-34R4 to make the entry at 3,4 a 0.
Étape 1.19.1
Perform the row operation R3=R3-34R4 to make the entry at 3,4 a 0.
[112032001-23000-34⋅00-34⋅01-34⋅034-34⋅10-34⋅00001000001]
Étape 1.19.2
Simplifiez R3.
[112032001-2300001000001000001]
[112032001-2300001000001000001]
Étape 1.20
Perform the row operation R1=R1-32R4 to make the entry at 1,4 a 0.
Étape 1.20.1
Perform the row operation R1=R1-32R4 to make the entry at 1,4 a 0.
[1-32⋅012-32⋅00-32⋅032-32⋅10-32⋅001-2300001000001000001]
Étape 1.20.2
Simplifiez R1.
[11200001-2300001000001000001]
[11200001-2300001000001000001]
Étape 1.21
Perform the row operation R2=R2+23R3 to make the entry at 2,3 a 0.
Étape 1.21.1
Perform the row operation R2=R2+23R3 to make the entry at 2,3 a 0.
[1120000+23⋅01+23⋅0-23+23⋅10+23⋅00+23⋅0001000001000001]
Étape 1.21.2
Simplifiez R2.
[11200001000001000001000001]
[11200001000001000001000001]
Étape 1.22
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
Étape 1.22.1
Perform the row operation R1=R1-12R2 to make the entry at 1,2 a 0.
[1-12⋅012-12⋅10-12⋅00-12⋅00-12⋅001000001000001000001]
Étape 1.22.2
Simplifiez R1.
[1000001000001000001000001]
[1000001000001000001000001]
[1000001000001000001000001]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22,a33,a44, and a55
Pivot Columns: 1,2,3,4, and 5
Étape 3
The rank is the number of pivot columns.
5